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Abstract—Diffusion models have transformed generative tasks
across multiple modalities such as images, videos, and audio.
While their rapid adoption has enabled remarkable progress, it
also introduces pressing concerns related to security, trustworthi-
ness, and intellectual property rights. The ability of these models
to produce highly realistic synthetic content poses significant
challenges for verifying provenance, attributing ownership, and
ensuring legal responsibility.

This survey presents a comprehensive review of recent wa-
termarking and traceability techniques designed specifically for
diffusion-based generative models. We organize existing ap-
proaches according to their underlying design principles and
implementation strategies, including methods based on latent
space embedding, output space watermarking, steganographic
encoding, and fingerprinting introduced during model training.
In addition, we evaluate their effectiveness in supporting content
authentication, ownership validation, and model accountability
under various adversarial scenarios. We conclude by outlining
current limitations and suggesting future research directions
aimed at developing more robust, standardized, and ethically
grounded watermarking frameworks.

This survey was prepared for coursework at the National Taiwan
University of Science and Technology.

Index Terms—diffusion models, watermarking, provenance
verification, generative AI security, traceability

I. INTRODUCTION

Diffusion models have emerged as a transformative class
of generative models, capable of synthesizing high-quality
images, audio, and video with remarkable realism. Models
such as DALL·E 2 [1], Stable Diffusion [2], and Imagen [3]
have demonstrated the ability to generate photorealistic content
from textual prompts, and are now widely adopted in both
open-source communities and commercial platforms.

While these advancements unlock significant creative and
scientific opportunities, they also introduce critical challenges
related to content authenticity, intellectual property (IP) pro-
tection, and public trust. As synthetic content becomes increas-
ingly indistinguishable from real-world data, malicious use
cases such as misinformation, impersonation, or unauthorized
redistribution, become harder to detect and attribute. These
risks are further amplified by the ease of access and fine-tuning
afforded by modern diffusion architectures.

To mitigate these risks, a growing body of research has
focused on integrating watermarking and traceability mech-
anisms into the generative process. These techniques aim to

attribute synthetic content to its source, verify model or output
ownership, and enable downstream accountability. However,
watermarking diffusion models poses unique technical chal-
lenges: embedded signals must be imperceptible yet robust,
remain intact under transformations and adversarial perturba-
tions, and in some cases generalize across model architectures
and modalities (e.g., from static images to video or audio).

This survey provides a comprehensive overview of recent
advances in watermarking and provenance verification for
diffusion models. We classify existing techniques according to
their injection stage such as latent-space embedding, output-
space watermarking, backdoor-based methods, and training-
time fingerprinting, and analyze their design trade-offs in
terms of robustness, fidelity, stealth, and scalability. We also
discuss emerging application scenarios, evaluation protocols,
and the alignment of watermarking practices with legal and
ethical frameworks. Finally, we outline open challenges and
propose future directions for developing secure, interoperable,
and responsible watermarking systems for generative AI.

II. BACKGROUND

A. Security and Traceability in Diffusion Models

The rapid proliferation of diffusion-based generative models
has enabled unprecedented advances in high-fidelity content
creation. However, this has also raised pressing concerns over
content authenticity, intellectual property infringement, model
misuse, and accountability. Unlike conventional generative
models, diffusion systems are highly accessible, often open-
source, and easy to fine-tune, making it difficult to identify
content origin or enforce ownership.

To mitigate these risks, recent research has focused on
secure watermarking [4], [5], output traceability [6], [7], and
model attribution [8], [9]. These methods vary significantly in
their technical design and objectives, ranging from embedding
imperceptible signals in the model itself [4], to tracing forensic
signatures from generated outputs [6], to legally binding a
model’s behavior to its rightful owner [9].

B. Model-Level Embedding Strategies

Model-level watermarking involves injecting identifiable
signals into the internal behavior or latent representation of
a generative model. This class includes latent-space water-
marking methods such as CLUE-MARK [10] and Robin [11],



TABLE I: Summary of Watermarking Techniques in Diffusion Models

Watermarking Stage Technique Type Representative Methods and Features

Latent-Space Noise-space embedding CLUE-MARK, DiffusionShield: inject watermarks in noise vectors during inference; cryptographically
secure and imperceptible

Multi-stage feature tuning Robin, LaWa: modify VAE encoders or UNet activations for robust watermark persistence

Image-Space
Encoder-decoder steganography StegaStamp, InvisMark: imperceptible signals embedded at output; adversarially optimized
Frequency/pixel-level perturbation DCT-style watermarking; visual quality vs. robustness tradeoff
Overlay watermarking Visible watermarks like QR codes/logos for legal traceability (e.g., Gaussian Shading++)

Backdoor/Prompt Trigger-based behavior Prompt-conditioned watermark activation (e.g., PCDiff): output changes when prompt contains watermark
trigger

Steganographic prompt injection WaDiff, Prompt-tuned watermarking (e.g., PT-Mark): encode source ID in output when condition is met

Training-Time Data watermarking ProMark, SAT-LDM: watermark injected via data augmentation; survives fine-tuning
Ownership binding TraceMark-LDM: bind user/model ID into outputs for legal provenance and accountability

which embed structured noise or perturbations into the de-
noising process. Others, like PT-Mark [12] or semantic-tuning
frameworks, manipulate the semantic trajectory of outputs by
adjusting training objectives or conditioning mechanisms.

These approaches are typically invisible to the end user
and are designed to be robust against model fine-tuning, crop-
ping, and other transformations. Some variants also integrate
cryptographic primitives [13] for verifiable authentication, or
adversarial losses [14] to improve resilience against watermark
removal attacks.

C. Output-Level Traceability and Inversion Defenses

A separate line of work targets the generation output di-
rectly. These output-level methods embed watermarks into the
synthesized images or videos at inference time. Examples
include CoSDA [15], which ensures watermark persistence
against content editing, and Tree-Ring watermarking [6],
which improves temporal robustness in video generation.
These methods are particularly valuable in deployment scenar-
ios where model access is restricted, and outputs may undergo
post-processing such as resizing, compression, or editing.

Complementary to active embedding, decoder inversion and
reconstruction-based techniques [16] aim to recover latent rep-
resentations or identify model-specific patterns from outputs,
effectively enabling model attribution even in the absence of
explicit watermark signals. In parallel, defense strategies [7]
have been proposed to protect watermark integrity against style
transfer, adversarial perturbations, or signal removal attacks.

D. Provenance Analysis and Ownership Verification

Beyond embedding, passive fingerprinting and provenance
analysis offer alternative strategies for model and output
attribution. These techniques, such as GAN fingerprinting [5],
diffusion signature matching [8], and CLIP-based similarity
analysis, detect unique statistical artifacts left by specific
models without requiring watermark injection.

In parallel, methods such as PCDiff and WaDiff focus on en-
forcing ownership and identity through proactive mechanisms.
These include prompt-triggered model behavior, signature-
conditioned outputs, and watermark-controlled generation, all
of which aim to establish legally verifiable ties between model
creators and generated content. As regulatory frameworks such

as the EU AI Act and C2PA standards continue to evolve,
these solutions are becoming increasingly critical in aligning
generative AI technologies with policy and ethical guidelines.

To consolidate the strategies discussed above, Table I
summarizes major watermarking techniques based on their
injection stage, implementation approach, and representative
methods.

III. TAXONOMY OF WATERMARKING TECHNIQUES

Before diving into individual watermarking methods, we
illustrate the typical generative pipeline of diffusion models
and the corresponding conceptual spaces where watermarking
can be introduced:
Flow Explanation:

• The generation pipeline follows this sequence: [Prompt]
→ [Latent Noise] → [Denoising Process] → [Final
Image]

• Each stage operates in a different conceptual space:
– Latent Noise: processed in the Latent-Space, where

watermarking or manipulations can be subtle and
efficient.

– Denoising Process: happens during training or in-
ference, where Backdoor or Training-Time attacks
may be inserted.

– Final Image: exists in the Image-Space, where vis-
ible watermarks or perceptual manipulations appear.

Watermarking techniques for diffusion models can be
broadly categorized based on the stage of the generative
pipeline at which watermark signals are introduced. We iden-
tify four primary classes: latent-space watermarking, image-
space watermarking, backdoor and steganographic watermark-
ing, and training-time watermarking. Each category reflects
different design assumptions and application goals, and in-
volves trade-offs across imperceptibility, robustness, fidelity,
and implementation complexity.

A. Latent-Space Watermarking

Latent-space watermarking refers to techniques that inject
watermark signals into the intermediate latent representa-
tions of diffusion models, typically noise vectors or encoded
features in latent diffusion models (LDMs). These methods



benefit from the semantic structure and lower dimensionality
of latent spaces, enabling high-capacity and low-visibility
watermarking.

A representative approach is DiffusionShield [17], which
perturbs latent noise vectors during inference to embed robust
watermark signatures that remain imperceptible in the final
output. CLUE-MARK [18] further introduces cryptographic
security by leveraging the hardness of the Continuous Learning
With Errors (CLWE) problem to embed verifiable and unde-
tectable watermarks into the latent noise space, offering formal
guarantees of resilience and attribution integrity.

Some methods operate at multiple stages, for instance,
modifying the VAE encoder outputs, noising schedules, or
denoising UNet activations, making latent-space watermarking
one of the most versatile and generalizable strategies, partic-
ularly for LDM-based architectures.

B. Image-Space Watermarking

Image-space watermarking techniques embed information
directly into the generated image, typically at or near the
final decoding stage. These approaches are generally model-
agnostic and can be applied post hoc, but often require careful
balancing between visual fidelity and watermark robustness.

A representative example is StegaStamp [19], which uses
a neural encoder-decoder pipeline to embed invisible water-
marks into images. The system is designed to maintain high
visual quality while allowing reliable watermark recovery un-
der common image transformations. More recent methods like
InvisMark [7] enhance this idea by incorporating adversarial
training and perceptual loss constraints, achieving stronger
robustness against editing and providing verifiable provenance
detection.

Other methods in this category include frequency-domain
embedding (e.g., DCT-based), pixel-level perturbations, or
overlay-style watermarks, each offering distinct trade-offs be-
tween stealth and detection accuracy.

C. Backdoor and Steganographic Watermarking

This class of methods exploits the model’s sensitivity to
specific triggers or input perturbations, causing it to output
identifiable, traceable content when activated. Such water-
marking can be highly stealthy, leveraging the model’s learned
behavior rather than modifying outputs directly.

StegaStamp [20], originally proposed for GANs, has been
adapted for diffusion models by encoding hidden messages
into generated images via an encoder-decoder network. More
recent diffusion-specific approaches introduce backdoors dur-
ing training that activate upon encountering certain prompts
or noise patterns. These methods often involve optimizing
noise schedules, perturbing timesteps, or injecting conditional
behavior during generation.

While highly stealthy and flexible, backdoor watermarking
raises concerns about potential misuse, interpretability, and
failure under distribution shifts. It is typically used for own-
ership claims, source verification, or to track specific model
instances in deployment.

D. Training-Time Watermarking

Training-time watermarking methods embed signals directly
into the model weights or generation dynamics by modi-
fying the training data or objectives. These approaches are
often more persistent and difficult to remove than post hoc
watermarking, and are particularly suitable for open-model
scenarios where weight-level traceability is essential.

ProMark [21] introduces orthogonal watermarks into the
training data, allowing causal attribution of generated content
back to the training process. The method ensures that specific
signals emerge in the outputs without degrading perceptual
quality. Similarly, SAT-LDM [22] (Self-Augmented Training
for Latent Diffusion Models) uses augmentation pipelines to
embed generalizable watermark patterns across diverse visual
styles, improving transferability and robustness.

Some training-time watermarking approaches also incorpo-
rate cryptographic primitives or model-specific noise patterns,
further supporting tamper detection and provenance verifica-
tion.

IV. RECENT ADVANCES IN DIFFUSION WATERMARKING

Recent research has substantially expanded the design space
of watermarking techniques in diffusion models, introducing
a range of methods that address security, attribution, and
deployment needs. These advances span multiple technical
layers—from latent-space injection and output-space encoding
to model fingerprinting and identity-bound generation—and
reflect an increasing emphasis on robustness, verifiability, and
legal interoperability.

Latent-space watermarking has emerged as a central tech-
nique, embedding signals directly into the noise or feature
representations of generative models. CLUE-MARK [23] pro-
poses a cryptographic approach based on Learning With Errors
(LWE), enabling verifiable and invisible watermarking in la-
tent space. LaWa [24] and Robin [11] introduce robust training
strategies to embed resilient watermarks that persist through
fine-tuning and adversarial transformations. InvisMark [7]
incorporates neural steganography with adversarial loss to
enhance both stealth and detection accuracy.

In output-space watermarking, recent methods focus on
embedding signals into final image or video outputs while
maintaining visual fidelity. CoSDA [15] enables robust wa-
termark detection under compression, resizing, and content
editing by employing inversion-based decoding. Tree-Ring
watermarking [6] encodes temporal fingerprint patterns across
video frames, enhancing traceability in video diffusion models.
These techniques enable forensic analysis even when model
access is restricted.

Beyond embedded watermarks, provenance analysis tech-
niques support content attribution in open-world settings.
GenTrace [25] matches latent fingerprints between generated
outputs and known models, while VIDiff [26] performs video-
level model attribution through cross-frame residual alignment.
Other approaches [8] analyze generation artifacts using statisti-
cal signatures or CLIP-based semantic traces, enabling passive
attribution without modifying the generation process.



A parallel line of work focuses on ownership binding and
identity protection. PCDiff [27] introduces prompt-conditioned
watermarking that embeds creator identity into the generative
process. TraceMark-LDM [28] and WaDiff [29] further sup-
port dual-role watermarking that links both the model owner
and user identity to each generated instance. These approaches
align with emerging standards such as the EU AI Act and the
C2PA framework, making them suitable for real-world legal
and commercial deployment.

Collectively, these advances demonstrate a growing maturity
in diffusion watermarking research—balancing technical re-
silience with ethical responsibility and deployment practicality.

V. APPLICATION SCENARIOS AND TECHNICAL
IMPLICATIONS

The design and deployment of watermarking strategies are
heavily influenced by the context in which generative diffu-
sion models are applied. Different use cases present distinct
requirements in terms of robustness, visibility, legal enforce-
ability, and adversarial resilience. This section outlines repre-
sentative application domains and analyzes the corresponding
technical implications that shape watermarking choices.

A. Visual Media Platforms and AI Art

Creative platforms such as Midjourney, Leonardo.Ai, and
Stable Diffusion are widely used for generating stylized im-
ages, illustrations, and concept art. In such contexts, main-
taining high perceptual fidelity is critical, as users expect
clean, artifact-free outputs. Watermarking methods must there-
fore prioritize invisibility and imperceptibility while remain-
ing compatible with diverse prompts and style-guided gen-
eration. Latent-space watermarking and adversarially opti-
mized embedding strategies, including StegaStamp [19] and
ROBIN [11], are favored because they offer minimal visual
impact and integrate seamlessly into creative pipelines.

However, these platforms also face risks of unautho-
rized model redistribution and content laundering, particu-
larly within open-source ecosystems. Fine-tuned or pirated
models may strip or obfuscate embedded watermarks through
retraining, knowledge distillation, or adversarial editing. To
address these challenges, adversarially robust and training-
time watermarking methods such as ROBIN and InvisMark [7]
have been developed, aiming to preserve attribution even under
model-level transformations. As commercial adoption grows,
especially in tools aligned with content provenance standards
(e.g., C2PA), the need for watermarking systems that balance
visual quality, resilience, and attribution verifiability continues
to intensify.

B. Copyright Compliance and Legal Traceability

Applications in professional photography, digital journal-
ism, and enterprise content pipelines require watermarking
systems that can support legal attribution and downstream
enforcement. In these settings, watermark visibility is not nec-
essarily a drawback. Visible watermarks, such as transparent

overlays, QR codes, or logos, can act as strong visual deter-
rents against unauthorized use. However, visual watermarks
alone are insufficient for legal validation, especially when
removed or altered.

Hybrid techniques that combine visible and invisible wa-
termarking are thus increasingly adopted. Methods like Gaus-
sian Shading++ [30] offer public-key verification mechanisms,
enabling content owners to cryptographically prove the au-
thenticity and ownership of generated outputs. These ap-
proaches align with emerging content provenance and authen-
ticity standards, such as the Coalition for Content Provenance
and Authenticity (C2PA) [31] and the European Union’s AI
Act [32], which emphasize verifiability, auditability, and user
accountability in AI-generated media.

C. Multimodal Generation and Deepfake Forensics

Watermarking in multimodal contexts, such as text-to-video,
text-to-speech, and cross-modal synthesis, introduces chal-
lenges beyond those in image generation. Generated videos,
for instance, require watermark persistence across frames and
robustness to compression artifacts, motion blur, and temporal
sampling. Techniques such as Tree-Ring watermarking [6]
and VIDiff [26] address this by encoding temporally coherent
signals that remain detectable under typical video transforma-
tions.

In AI-generated speech, watermarks must survive channel
effects, resampling, and lossy compression, motivating re-
search into frequency-domain embedding methods such as
GROOT [33] for audio diffusion models. Cross-modal gen-
eralization also remains a challenge, especially when text-
conditioned outputs must maintain consistent watermark be-
havior across modalities.

In forensic settings such as deepfake detection, explicit
watermarking is often impractical, and passive fingerprinting
becomes essential. Techniques based on diffusion signature
analysis [8], model-specific residuals, and CLIP-space embed-
dings are used to support attribution. Recent methods like Sta-
ble Signature [34] and datasets such as FaceForensics++ [35]
offer strong baselines for model identification under real-world
tampering scenarios.

D. Open-World Attribution and Model Accountability

In real-world deployments, particularly within open-source
ecosystems or user-personalized model environments, it is
often infeasible to maintain centralized control over model
versions or outputs. This creates open-world attribution scenar-
ios, where watermarking techniques must accommodate cross-
model generalization, partial signal persistence, and post-hoc
source identification. Approaches such as GenTrace [36] and
diffusion fingerprinting [8] tackle this challenge by analyzing
model-specific noise patterns, latent traces, or feature-level
activations to infer the origin of generated content.

To establish ownership under such conditions, methods like
PCDiff [37] utilize prompt-conditioned behavioral signatures,
while TraceMark-LDM [38] and WaDiff [29] embed model
identity into latent features or generation outputs. These



techniques support scalable and privacy-preserving attribution,
enabling content provenance and misuse detection without re-
quiring full control over content dissemination or downstream
infrastructure.

VI. PROVENANCE VERIFICATION AND TRACEABILITY

As diffusion models are increasingly adopted in both open
and commercial settings, the ability to verify the origin and
authenticity of generated content has become a central concern
in generative AI security. Provenance verification seeks to
trace synthetic content back to the specific model or system
that produced it, supporting forensic analysis, regulatory en-
forcement, and responsible AI deployment.

One prominent line of research centers on neural finger-
printing [8], which aims to identify subtle statistical or archi-
tectural artifacts left by a particular generative model. These
fingerprints can emerge from model initialization, training data
biases, or architectural design choices, and are often impercep-
tible to human observers. By extracting and comparing such
residual patterns from generated outputs, these methods can
attribute content to known models with high confidence, even
without explicit watermarking.

Beyond residual-based analysis, other approaches leverage
high-level semantic embeddings to infer model origin. For
instance, CLIP-based similarity [39] and cross-modal match-
ing techniques use latent representations to compare generated
content against reference distributions, enabling soft attribution
when precise identification is infeasible. Frequency-domain
analysis and perceptual hashing have also been applied to
detect generation artifacts, such as Fourier-based Tree-Ring
Watermarks [6], which capture periodic residuals characteristic
of specific diffusion pipelines.

Recent advances extend provenance analysis to latent-space
watermarking and video-level fingerprinting. GenTrace [25]
proposes a framework that embeds and retrieves model-
specific identifiers from latent representations, enabling at-
tribution even in the absence of visible signals. Similarly,
VIDiff [26] applies temporal statistical modeling to trace video
diffusion outputs by leveraging cross-frame consistency and
fingerprint signatures.

Despite these developments, provenance verification re-
mains technically challenging, particularly under adversarial
or post-processed conditions. Common operations such as
compression, cropping, resizing, and noise injection can de-
grade or obscure identifying signals. Moreover, fingerprinting
systems must generalize across varied architectures, training
paradigms, and data modalities, all while maintaining high
attribution accuracy and minimizing false positives.

To be effective in practice, provenance verification systems
must also align with real-world deployment constraints, such
as limited access to model internals or incomplete training
data records. In response, hybrid approaches combining pas-
sive fingerprinting with latent or output-level watermarking
have emerged as promising directions. These multi-layered
methods offer enhanced resilience to tampering and provide
both content- and model-level attribution.

In summary, provenance verification is a critical component
in ensuring transparency, trust, and auditability within gener-
ative AI ecosystems. Ongoing work must enhance robustness
against manipulation, improve generalization across image,
video, and audio modalities, and support the development of
standardized protocols for verifying AI-generated content in
open-world scenarios.

TABLE II: Benchmark Datasets for Evaluating Watermarking
Techniques

Dataset Modality Use Case and Notes

MS-COCO [40] Image Diverse captions and scenes; used for
robustness and watermark retention
testing.

CelebA-HQ [41] Face Image Structured facial features; used for
fidelity vs robustness tradeoffs.

FFHQ [42] Face Image High-res frontal faces; used for own-
ership watermarking.

ImageNet [43] Image Diverse classes; useful for evaluating
watermark fidelity degradation.

LAION-5B [44] Image-Text Large-scale noisy captions; used for
generalization testing.

WebVid-2M [45] Video Video-captioned data; evaluates tem-
poral watermark consistency.

FaceForensics++ [46] Deepfake Video Tamper-resilient watermark evalua-
tion under post-processing.

DFDC [47] Deepfake Video Real vs fake pairs; used for real-
world watermark verification.

VII. DATASETS FOR EVALUATION

The evaluation of watermarking and traceability techniques
in diffusion models critically depends on the availability
of appropriate datasets. However, the field currently lacks
standardized benchmarks specifically designed for assessing
watermark robustness, detectability, and attribution accuracy.
As a result, most studies rely on repurposed datasets originally
intended for training or evaluating generative quality, rather
than watermark resilience.

A commonly used dataset is MS-COCO [40], which offers
diverse, real-world images and is frequently employed in
Stable Diffusion training and evaluation. Its semantic diver-
sity and structural complexity make it suitable for testing
watermark visibility and robustness under varied content and
captions. CelebA-HQ [41] is another popular choice for face
synthesis, where watermarking is embedded in highly struc-
tured regions. Subsets of ImageNet [43] are used for fidelity-
versus-robustness tradeoff evaluation across diverse categories.

Beyond these, LAION-400M and LAION-5B [44] serve
as large-scale, open-domain datasets with noisy captions and
complex semantics, ideal for testing watermark generalization
under distribution shift. FFHQ [42] is widely used in identity-
embedded watermarking and facial fingerprinting studies due
to its high-resolution facial structure. Video watermarking
methods leverage datasets like WebVid-2M [45], which sup-
port temporal robustness evaluation across frames. Datasets
originally developed for deepfake detection, such as Face-
Forensics++ [35] and DFDC [47], are also used to assess
watermark tamper resistance and authenticity verification. An



overview of these datasets and their corresponding modalities
and applications is provided in Table II.

Some proprietary datasets have emerged for internal bench-
marking. OpenAI’s in-house provenance datasets and Google
DeepMind’s SynthID corpus include curated AI-generated
samples with watermark annotations, though they are not
publicly accessible. Similarly, the DEFCON AI Red Team
challenge has proposed evaluation protocols for adversarial
transformations like cropping, compression, and prompt tam-
pering [48]. However, these efforts remain ad hoc and lack
reproducible benchmark standards.

A critical limitation is that most datasets are not watermark-
aware; they lack metadata annotations, ground truth ownership
labels, or adversarial variants. Moreover, there is a scarcity of
multimodal benchmarks (e.g., video, speech), limiting the eval-
uation of cross-modal watermarking systems. Future research
should prioritize the construction of dedicated watermark-
ing benchmarks with rich annotations, stress-tested content
transformations, and protocol-driven generalization settings.
These would enable reliable, standardized, and reproducible
evaluation pipelines for secure diffusion watermarking.

VIII. EVALUATION METRICS AND BENCHMARKS

Evaluating watermarking techniques in diffusion models
requires a comprehensive set of metrics that reflect technical
robustness and real-world applicability.

Robustness measures whether a watermark can survive
post-processing operations such as cropping, resizing, com-
pression, noise, and adversarial perturbations. It is typically
measured by detection accuracy under perturbation:

Robustness =
Correct detections under perturbation

Total perturbed samples

Fidelity quantifies the perceptual quality of watermarked
outputs. Common metrics include PSNR, SSIM, and FID. The
PSNR is defined as:

PSNR = 10 · log10
(
MAX2

MSE

)
where MAX is the maximum possible pixel value and MSE

is the mean squared error. SSIM measures local luminance,
contrast, and structure similarity:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where µx, µy are means, σ2
x, σ2

y are variances, and σxy is the
covariance between images x and y. FID (Fréchet Inception
Distance) compares the statistics of generated and real images
in feature space:

FID = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)

where (µr,Σr) and (µg,Σg) are the mean and covariance
of real and generated data in the Inception feature space.

Capacity refers to the amount of information (e.g., bits) that
can be embedded per image without significantly degrading
robustness or fidelity. It is often measured in bits per pixel
(bpp) or total bits per sample.

Stealth assesses how imperceptible the watermark is to both
human observers and automated detection systems. This can
be quantified using detection AUC (area under the curve) or
success rates of watermark removal attacks.

Cross-architecture generalization indicates whether a wa-
termarking method remains effective across different backbone
architectures, such as UNet, transformer-based diffusion mod-
els, and latent diffusion models. This is essential for open-
world attribution scenarios where models are fine-tuned or
redistributed.

While recent initiatives like the DEFCON AI Red Team
challenge and OpenAI’s content provenance API provide early
evaluation efforts, the field still lacks standardized bench-
marks tailored to watermarking. A comprehensive evaluation
framework should include watermark-specific datasets, con-
trolled perturbation pipelines, cross-modal testing, and blind
evaluation settings. Establishing such benchmarks is vital for
reproducibility, fair comparison, and real-world deployment of
secure diffusion watermarking systems.

IX. LIMITATIONS AND RESEARCH OUTLOOK

Despite significant advancements in diffusion watermarking,
several limitations and open research challenges remain.

There is currently no widely applicable watermarking
method that remains effective across model variants, remixing,
and finetuning. A truly universal watermark would need to
maintain its integrity despite such downstream modifications.

Another key challenge lies in enabling zero-knowledge
attribution, where external parties can verify the presence of a
watermark without requiring access to the model’s internal
architecture or parameters. This would help preserve both
model confidentiality and user privacy.

Most existing techniques are limited to image-based appli-
cations. As generative models continue to expand into other
modalities, such as video and audio, there is a growing need to
develop watermarking approaches that are robust and effective
across multiple media types.

The balance between stealth and robustness also remains
a critical issue. A watermark must be imperceptible to hu-
man observers, yet resilient enough to withstand intentional
removal or manipulation.

In addition, the legal and ethical dimensions of water-
marking require clearer global standards. Collaborating with
organizations such as NIST and ISO to establish formal
guidelines will be essential to ensure responsible deployment
and interoperability across domains.

X. CONCLUSION

Secure watermarking and traceability are vital components
of responsible generative AI deployment. As diffusion mod-
els become increasingly powerful and widely accessible, the
need to safeguard content provenance, ensure accountability,



and prevent misuse grows in parallel. Robust watermarking
strategies not only help verify the origin of AI-generated
content, but also serve as an essential tool in combating
misinformation, protecting intellectual property, and fostering
public trust in generative technologies.

The challenges ahead, ranging from maintaining robustness
under adversarial conditions, enabling verification without ex-
posing model internals, to extending support across modalities,
highlight the urgency of developing watermarking methods
that are resilient, generalizable, and ethically grounded. In par-
allel, collaboration with legal and standards organizations will
be necessary to create consistent frameworks for responsible
implementation.

We encourage ongoing interdisciplinary research that
bridges technical innovation with legal, ethical, and societal
considerations. As generative models continue to evolve, wa-
termarking must keep pace, not just as a technical safeguard,
but as a foundational element of transparent and accountable
AI systems.

REFERENCES

[1] A. Ramesh, M. Pavlov, G. Goh et al., “Hierarchical text-conditional
image generation with clip latents,” arXiv preprint arXiv:2204.06125,
2022.

[2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” CVPR, 2022.

[3] C. Saharia et al., “Photorealistic text-to-image diffusion models with
deep language understanding,” NeurIPS, 2022.

[4] D. Zhang, M. Tancik, and R. Ng, “Stegastamp: Invisible learning-based
image watermarks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 2117–2126.

[5] N. Yu, L. S. Davis, and M. Fritz, “Attributing fake images to gans:
Learning and analyzing fingerprints,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
7556–7566.

[6] Y. Wen, L. Wang, S. Tang, and Z. Zhang, “Tree-ring watermarks:
Fingerprints for diffusion images,” arXiv preprint arXiv:2305.20030,
2023.

[7] X. Zhang, P. Tan, L. Wen, L. Chen, Y. Fan, X. Jin, and Y. Zheng,
“Invismark: Invisible and robust watermarking for ai-generated
image provenance,” arXiv preprint arXiv:2311.07795, 2023. [Online].
Available: https://arxiv.org/abs/2311.07795

[8] N. Yu et al., “Attributing and fingerprinting images generated by
diffusion models,” arXiv preprint arXiv:2305.20025, 2023.

[9] T. Zhang, B. Wang, Y. Luo, and D. Lin, “Promark: Proactive diffusion
watermarking for causal attribution,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024.

[10] B. Chen, R. Xu, X. Li, and S. Ma, “Clue-mark: Watermarking diffusion
models using clwe,” arXiv preprint arXiv:2411.11434, 2024.

[11] T. Zhang, D. Lin, and Y. Luo, “Robin: Robust and invisible watermarks
for diffusion models,” in Advances in Neural Information Processing
Systems, 2024.

[12] B. Wang, T. Zhang, and D. Lin, “Pt-mark: Invisible watermarking via
prompt-tuned semantic alignment,” arXiv preprint arXiv:2504.10853,
2024.

[13] J. Wang, Z. Wu, and Y. Zhang, “Towards a correct usage of cryptography
in semantic watermarks,” arXiv preprint arXiv:2503.11404, 2025.

[14] T. Zhang, Y. Luo, and D. Lin, “Invisible yet robust: Watermarking diffu-
sion models with adversarial latents,” arXiv preprint arXiv:2406.08337,
2024.

[15] R. Zhang, H. Chen, Y. Lin, and E. Zhao, “Cosda: Content-
sensitive diffusion watermarking against post-generation editing,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2025, to
appear. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/
view/32295

[16] Y. Zhao, J. Wu, X. Liu, and W. Zhang, “Gradient-free decoder
inversion in latent diffusion,” in Proceedings of the 38th Conference
on Neural Information Processing Systems (NeurIPS), 2024.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2024/file/970f59b22f4c72aec75174aae63c7459-Paper-Conference.pdf

[17] Y. Wen et al., “Towards robust and imperceptible watermarking for
diffusion models,” arXiv preprint arXiv:2306.05153, 2023.

[18] K. Shehata, A. Kolluri, and P. Saxena, “Clue-mark: Watermarking
diffusion models using clwe,” arXiv preprint arXiv:2411.11434, 2024.

[19] M. Tancik, B. Mildenhall, R. Ng et al., “Stegastamp: Invisible learning-
based image watermarks,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2117–
2126.

[20] S. Baluja, “Hiding images in plain sight: Deep steganography,” NeurIPS,
2020.

[21] H. Asnani, Y. Balaji, S. Honari, R. Zhang, L. Karlinsky, S. Belongie,
and X. Zhang, “Promark: Proactive diffusion watermarking for causal
attribution,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

[22] Y. Zhang, M. Liu, X. Wang et al., “Sat-ldm: Self-augmented training
for robust watermarking in latent diffusion models,” arXiv preprint
arXiv:2403.12345, 2024.

[23] M. Shehata et al., “Clue-mark: Watermarking diffusion models using
clwe,” arXiv preprint arXiv:2404.00230, 2024.

[24] Z. Song, Z. Zhao, J. Jiang, J. Li, and N. Yu, “Lawa: Using
latent space for in-generation image watermarking,” arXiv preprint
arXiv:2406.05868, 2024. [Online]. Available: https://arxiv.org/abs/2406.
05868

[25] Anonymous, “Gentrace: Provenance tracing for diffusion models,” in
International Conference on Learning Representations (ICLR), 2024.

[26] H.-Y. Tseng et al., “Vidiff: Video diffusion model fingerprinting,” arXiv
preprint arXiv:2312.00286, 2024.

[27] Anonymous, “Pcdiff: Proactive control for ownership protection,” arXiv
preprint arXiv:2504.11774, 2025.

[28] ——, “Tracemark-ldm: Authenticatable watermarking for latent diffu-
sion models,” arXiv preprint arXiv:2503.23332, 2025.

[29] R. Min, S. Li, H. Chen, and M. Cheng, “A watermark-conditioned
diffusion model for ip protection,” in European Conference on Computer
Vision. Springer, 2024, pp. 104–120.

[30] H. Liu, Y. Zhao, Y. Chen, and T. Zhang, “Gaussian shading++: Prov-
able and visible watermarking for diffusion models,” arXiv preprint
arXiv:2403.07738, 2024.

[31] C2PA, “Coalition for content provenance and authenticity (c2pa),” 2024,
https://c2pa.org.

[32] E. Commission, “European union artificial intelligence act,” 2024,
https://artificialintelligenceact.eu.

[33] J. Gao, Y. Luo, T. Zhu, and D. Lin, “Groot: Generating robust wa-
termarks for diffusion-model-based audio synthesis,” ACM Multimedia,
2024.

[34] Y. Wang, Y. Li, L. Zhang et al., “Stable signature: Identity watermarking
for stable diffusion,” arXiv preprint arXiv:2310.01856, 2023.

[35] A. Rossler, D. Cozzolino, L. Verdoliva et al., “Faceforensics++:
Learning to detect manipulated facial images,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[36] Y. Wang, J. Chen, Q. Sun, and N. Yu, “Gentrace: Provenance tracing for
diffusion models via latent fingerprints,” OpenReview, 2024. [Online].
Available: https://openreview.net/forum?id=8Ez0cWrdA5

[37] T. Zhang, D. Lin, and Y. Luo, “Pcdiff: Proactive control for ownership
protection in diffusion models,” arXiv preprint arXiv:2504.11774, 2025.

[38] Z. Wu, H. Li, and Y. Zhao, “Tracemark-ldm: Authenticatable water-
marking for latent diffusion models,” arXiv preprint arXiv:2503.23332,
2025.

[39] A. Radford, J. W. Kim, J. Hallacy et al., “Learning transferable
visual models from natural language supervision,” arXiv preprint
arXiv:2103.00020, 2021.

[40] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft coco: Common ob-
jects in context,” in European Conference on Computer Vision (ECCV),
2014.

[41] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” in International
Conference on Learning Representations (ICLR), 2018.

[42] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

https://arxiv.org/abs/2311.07795
https://ojs.aaai.org/index.php/AAAI/article/view/32295
https://ojs.aaai.org/index.php/AAAI/article/view/32295
https://proceedings.neurips.cc/paper_files/paper/2024/file/970f59b22f4c72aec75174aae63c7459-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/970f59b22f4c72aec75174aae63c7459-Paper-Conference.pdf
https://arxiv.org/abs/2406.05868
https://arxiv.org/abs/2406.05868
https://openreview.net/forum?id=8Ez0cWrdA5


[43] O. Russakovsky et al., “Imagenet large scale visual recognition chal-
lenge,” 2015.

[44] C. Schuhmann, R. Beaumont, R. Vencu et al., “Laion-5b: An open
large-scale dataset for training next generation image-text models,” arXiv
preprint arXiv:2210.08402, 2022.

[45] M. Bain, A. Nagrani, G. Tzanetakis, and A. Zisserman, “Frozen in time:
Learning representations for temporal grounding using text and video,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

[46] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niess-
ner, “Faceforensics++: Learning to detect manipulated facial images,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[47] B. Dolhansky, R. Howes, B. Pflaum et al., “The deepfake detection
challenge (dfdc) preview dataset,” arXiv preprint arXiv:2006.07397,
2020.

[48] D. Organizers, “Defcon 31 ai red team challenge,” 2023,
https://www.defcon.org/html/defcon-31/dc-31-ai-village.html.


	Introduction
	Background
	Security and Traceability in Diffusion Models
	Model-Level Embedding Strategies
	Output-Level Traceability and Inversion Defenses
	Provenance Analysis and Ownership Verification

	Taxonomy of Watermarking Techniques
	Latent-Space Watermarking
	Image-Space Watermarking
	Backdoor and Steganographic Watermarking
	Training-Time Watermarking

	Recent Advances in Diffusion Watermarking
	Application Scenarios and Technical Implications
	Visual Media Platforms and AI Art
	Copyright Compliance and Legal Traceability
	Multimodal Generation and Deepfake Forensics
	Open-World Attribution and Model Accountability

	Provenance Verification and Traceability
	Datasets for Evaluation
	Evaluation Metrics and Benchmarks
	Limitations and Research Outlook
	Conclusion
	References

