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Abstract—This paper presents a learning-based monocular
visual odometry (VO) framework that leverages a Video Swin
Transformer for hierarchical 3D spatiotemporal modeling. Be-
yond incorporating pseudo-depth, our method employs early
multimodal fusion and 3D patch embedding to jointly encode
RGB and geometric information before transformer-based pro-
cessing, enabling effective spatiotemporal representation learn-
ing without relying on ground-truth depth. Trained end-to-
end to predict 6-DoF poses, the model captures both local
motion patterns and long-range dependencies. Experiments on
the KITTI Odometry dataset demonstrate superior perfor-
mance compared to prior learning-based VO methods in both
translation and rotation accuracy. The code is available at:
https://github.com/tongyu0924/VSTFusion-VO

Index Terms—visual odometry, Swin Transformer, multimodal
fusion, KITTI dataset

I. INTRODUCTION

Visual Odometry (VO) is a core technology in robotic
perception and autonomous navigation, with widespread appli-
cations in fields such as autonomous driving, indoor robotics,
and virtual reality. By analyzing a series of consecutive
images captured by a camera, VO calculates the real-time pose
change—encompassing both rotation and translation—of a
device relative to its starting position to estimate its trajectory.
A key advantage of VO is its independence from external
positioning systems like GPS. This makes it an efficient and
valuable solution for GPS-denied environments such as indoor
spaces, underground tunnels, or dense urban canyons, all while
relying on relatively low-cost sensors.

Traditional VO algorithms are primarily categorized into
two main approaches: feature-based and direct methods.
Feature-based approaches, such as the well-known ORB-
SLAM2 [1], follow a modular pipeline that involves detecting
and matching sparse keypoints (e.g., SIFT [2], ORB [3]) across
frames for geometric optimization. In contrast, direct methods
utilize dense pixel intensity information to estimate motion,
which can be faster in some scenarios but is often more
sensitive to illumination changes. Despite their successes,
these traditional methods’ heavy reliance on handcrafted fea-
tures and fine-tuning makes them vulnerable under dynamic
conditions and in low-texture scenes.

To overcome these limitations, learning-based VO ap-
proaches [4], [5] directly estimate poses from raw RGB
inputs, reducing dependence on manual design and improving
adaptability. Nevertheless, they still struggle with long-term
temporal consistency, generalization to unseen environments,
and scale ambiguity in monocular settings [6], [7].

Transformer-based architectures have recently shown strong
potential for capturing spatiotemporal dependencies [8], [9].
VO methods like TSformer-VO [10] and SWFormer-VO [11]
enhance motion encoding using attention mechanisms. How-
ever, many existing models are misaligned with video-native
transformer designs and often incorporate depth information
only at late stages, which limits their ability to mitigate scale
drift [6], [7], [12].

To address these challenges, we propose VSTFusion-VO, a
transformer-based monocular VO framework featuring two key
innovations: (1) early fusion of RGB and pseudo-depth inputs
using 3D patch embedding to integrate geometric information
from the outset, and (2) a video-native hierarchical transformer
backbone based on the Video Swin Transformer [13], enabling
multi-scale spatiotemporal modeling. This design preserves
temporal continuity, mitigates scale drift without requiring
external depth sensors, and strengthens motion encoding via
multimodal attention.

The main contributions of this paper are summarized as
follows:

• We propose a novel early-fusion mechanism that inte-
grates RGB and pseudo-depth information at the initial
input stage. By jointly encoding appearance and geo-
metric cues into a unified representation using 3D patch
embedding, our model effectively mitigates the scale
ambiguity inherent in monocular systems.

• We design a hierarchical temporal modeling backbone
based on the Video Swin Transformer, an architecture
specifically tailored for video data. This allows our model
to efficiently capture both local motion patterns and long-
range spatiotemporal dependencies, which is critical for
robust trajectory estimation.

• We conduct extensive experiments on the KITTI Odom-
etry benchmark [14], demonstrating that VSTFusion-VO
achieves state-of-the-art performance. Our method sur-
passes previous learning-based approaches in both trans-
lation and rotation accuracy, validating the effectiveness
of combining early multimodal fusion with hierarchical
temporal modeling.

II. RELATED WORK

As introduced previously, learning-based approaches have
emerged to overcome the limitations of traditional Visual
Odometry (VO). This section reviews the key research streams
that inform our proposed method. We first provide a broader
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Fig. 1: The proposed VO architecture fuses RGB and pseudo-depth (inferred from monocular input) via 3D patch embedding,
enabling early-stage geometric integration. A hierarchical Video Swin Transformer captures spatiotemporal dependencies,
followed by a regression head that estimates 6-DoF camera motion.

overview of deep learning advancements in monocular VO.
We then delve into two areas critical to our contributions:
strategies for RGB-depth fusion to address scale ambiguity,
and the evolution of transformer-based models for temporal
modeling.

A. Deep Learning for Monocular Visual Odometry

Deep learning-based methods have reshaped the VO land-
scape by learning representations directly from data, thus re-
ducing the reliance on handcrafted pipelines. Early pioneering
works can be broadly categorized into supervised and unsuper-
vised paradigms. Supervised methods, such as DeepVO [4],
were among the first to successfully apply an end-to-end
learning approach. They typically use a Convolutional Neural
Network (CNN) to extract visual features, followed by a Re-
current Neural Network (RNN) to model temporal dynamics
and directly regress 6-DoF poses. In parallel, unsupervised
methods, notably SfMLearner [5], introduced an innovative
self-supervised paradigm. By jointly training a depth network
and a pose network to minimize the photometric reprojection
error between consecutive frames, these models eliminated the
need for ground-truth pose labels.

While these foundational works demonstrated the potential
of deep learning, recent approaches have focused on further
improving robustness and scalability. This includes leverag-
ing spatiotemporal transformers [15], developing patch-level
refinement techniques [16], and incorporating attention-based
motion encoding [17] to address persistent challenges like
scale ambiguity and generalization.

B. RGB-Depth Fusion for VO

Depth information is crucial in monocular VO for mitigating
scale drift and enhancing geometric consistency. Early works,
such as GeoNet [6] and UnDeepVO [18], incorporate depth
supervision but typically fuse depth features only in later

stages of the pipeline. Depth-VO-Feat [19] integrates depth
through auxiliary heads or decoders.

More recent methods, including DVSO [20], adopt
modality-specific encoders with separate branches for RGB
and depth. RAFT-Stereo [21] further introduces stereo-specific
correlation volumes to improve depth matching. In contrast,
our method performs early fusion of RGB and pseudo-depth
via shared 3D convolutional embeddings [22], allowing unified
feature encoding prior to temporal modeling.

C. Transformer-based Temporal Modeling

Transformer models have recently shown strong poten-
tial in temporal visual perception. TSformer-VO [10] adopts
a ViT-based architecture with divided space-time attention
to model spatiotemporal dependencies from split-frame se-
quences. SWFormer-VO [11] extends this by leveraging hi-
erarchical self-attention in Swin Transformers to model long-
range temporal relations.

However, these models rely solely on RGB input, neglecting
geometric information from depth, which can limit perfor-
mance under low-texture or scale-sensitive conditions [23],
[24]. Our method addresses this by integrating pseudo-depth
features and employing a video-native temporal backbone to
enhance geometric reasoning in VO tasks.

III. PROPOSED METHOD

Our proposed method, VSTFusion-VO, is designed to ad-
dress the key challenges of scale ambiguity and insufficient
temporal modeling identified in prior works. To achieve
this, our framework introduces two core innovations that
directly correspond to our main contributions: an early-fusion
mechanism for integrating geometric cues, and a hierarchical
temporal backbone for robust motion encoding. The overall
architecture is illustrated in Fig. 1.



A. Spatial-guided Early Fusion via Joint Embedding

A primary challenge in monocular VO is the inherent scale
ambiguity. While incorporating depth information can mitigate
this, many existing methods perform late fusion, where RGB
and depth features are processed in separate streams and only
merged in later stages. This approach can be suboptimal, as
the initial feature extraction lacks geometric context.

To overcome this, we introduce a joint embedding module
that performs early fusion of RGB and pseudo-depth inputs.
By integrating geometric information at the very beginning
of the pipeline, we enable the network to learn a unified spa-
tiotemporal representation where appearance and geometry are
jointly encoded. This allows the subsequent transformer layers
to reason about motion and scene layout more effectively from
the outset.

Given an RGB frame It and its corresponding pseudo-depth
map Dt at time t, we first project each modality into 3D
patches and then merge them via element-wise addition to
form a unified feature tensor Ft:

Ft = PatchEmbed3D(It) + PatchEmbed3D(Dt) (1)

This fusion in the patch space ensures that the model can
leverage multimodal cues from the earliest stage, enhancing
temporal consistency and robustness in challenging scenes
with low texture or dynamic lighting.

B. Temporal Fusion with Video Swin Transformer

Accurate VO requires a model that can capture complex
motion patterns across a sequence of frames. Many previous
transformer-based VO models treat video as a simple bag of
frames, which can disrupt the crucial temporal continuity. We
address this by employing a hierarchical temporal modeling
backbone (Fig. 2) based on the first three stages of the Video
Swin Transformer [13], an architecture natively designed for
video data.
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Fig. 2: Temporal dependencies are captured by the first three
stages of the Video Swin Transformer.

The Video Swin Transformer’s design is particularly well-
suited for VO. It operates by progressively reducing spatial
resolution through patch merging layers while expanding the
temporal receptive field. This hierarchical process is highly
effective, as it enables the model to capture both fine-grained,
local motions (e.g., pixel displacements) in the early stages and
long-range, global temporal patterns (e.g., sustained camera
movements) in the later stages.

Formally, each Swin Transformer block in the temporal
encoder applies 3D window-based multi-head self-attention

(3DW-MSA), followed by feed-forward networks (FFN) and
residual connections. The shifted window (3DSW-MSA)
mechanism ensures information exchange between neighbor-
ing non-overlapping windows, enhancing spatiotemporal con-
tinuity. The computation in a pair of consecutive blocks is
defined as:

ẑl = 3DW-MSA(LN(zl−1)) + zl−1, (2)

zl = FFN(LN(ẑl)) + ẑl, (3)

ẑl+1 = 3DSW-MSA(LN(zl)) + zl, (4)

zl+1 = FFN(LN(ẑl+1)) + ẑl+1 (5)

Here, zl denotes the output of the l-th block and LN refers to
Layer Normalization. This powerful temporal fusion module
enables the model to effectively track motion over time, which
is crucial for accurate and stable pose estimation.

C. Pose Estimation

After temporal encoding, the output feature tensor, which is
rich with multimodal spatiotemporal information, is passed to
a 6-DoF mapping network for pose regression. Each relative
pose is represented as a 6-dimensional vector comprising
3 translation parameters (x, y, z) and 3 rotation parameters,
typically expressed using axis-angle or Euler angles.

The mapping network operates on the temporally enriched
features, enabling the model to preserve both spatial context
and temporal continuity for accurate and stable relative pose
estimation across consecutive frames.

To supervise the end-to-end training, we adopt a Mean
Squared Error (MSE) loss between the predicted poses and
the ground-truth poses:

L =
1

6B

B∑
n=1

6∑
i=1

(yi,n − ŷi,n)
2 (6)

where B is the batch size, and yi,n and ŷi,n denote the i-
th ground-truth and predicted pose components for the n-
th sample, respectively. This formulation jointly optimizes
translation and rotation, promoting robust and stable motion
estimation.

IV. EXPERIMENTS

The effectiveness of VSTFusion-VO is demonstrated
through quantitative and qualitative experiments on the KITTI
Odometry benchmark, evaluating accuracy, robustness to dy-
namic motion, and trajectory consistency. Details of the
dataset, evaluation metrics, training protocol, and baseline
comparisons are provided below.

A. Dataset

We evaluate our model on the KITTI Odometry bench-
mark [14], which consists of 22 real-world driving sequences
recorded at 10 FPS. Among these, 11 sequences (00–10)
include GPS-based ground-truth poses for evaluation. The
dataset captures urban and highway scenes with diverse dy-
namics, including varying speeds up to 90 km/h and sharp
turns.



TABLE I: Accuracy Comparison on KITTI Sequences

Metric Method 01 03 04 05 06 07 10

Translational error (%)

Deep-VO 156.389 73.552 10.803 56.184 64.397 71.790 128.732
TSformer-VO2 23.671 18.344 9.035 9.437 17.101 13.998 14.913
SWFormer-VO2 24.688 11.661 5.655 11.448 10.308 11.349 9.267
VSTFusion-VO 25.112 14.754 4.836 9.386 10.404 8.204 8.647

Rotational error (deg/100m)

Deep-VO 10.036 15.671 3.849 29.898 31.395 50.821 41.465
TSformer-VO2 5.855 11.644 4.874 3.907 5.395 7.440 4.381
SWFormer-VO2 3.648 6.731 1.596 4.501 2.924 7.708 3.043
VSTFusion-VO 5.772 9.197 2.550 4.092 3.688 6.440 3.446

ATE (m)

Deep-VO 19.981 11.744 3.850 123.298 107.995 22.831 57.901
TSformer-VO2 101.699 20.123 6.005 37.679 46.788 23.141 23.141
SWFormer-VO2 82.743 14.834 4.373 50.151 24.255 28.124 16.970
VSTFusion-VO 76.283 20.341 3.294 42.306 25.968 19.529 14.331

RPE (m)

Deep-VO 3.577 0.553 0.261 0.808 1.152 0.741 1.135
TSformer-VO2 0.542 0.128 0.141 0.137 0.181 0.123 0.159
SWFormer-VO2 0.723 0.095 0.104 0.100 0.139 0.092 0.126
VSTFusion-VO 0.703 0.101 0.085 0.104 0.133 0.102 0.117

RPE (◦)

Deep-VO 0.440 0.438 0.137 0.535 0.476 0.703 0.580
TSformer-VO2 0.310 0.284 0.174 0.263 0.251 0.282 0.322
SWFormer-VO2 0.238 0.222 0.125 0.197 0.189 0.206 0.238
VSTFusion-VO 0.260 0.221 0.129 0.201 0.179 0.214 0.241

We evaluated multiple variants of TSformer-VO and SWFormer-VO, and report only TSformer-VO2 and SWFormer-VO2, the strongest
in their series, to ensure fair comparison. TSformer-VO was reproduced using official weights and evaluated under the same protocol
as SWFormer-VO [25], with results matching the original reports. Only VSTFusion-VO is newly implemented in this work.

In our experiments, we train on sequences 00, 02, 03, and
09, and test on 01, 04, 05, 06, 07, 08, and 10. Pseudo-
depth maps are generated using Monodepth2 [7] to enhance
geometric perception in monocular settings. All frames are
resized to 192 × 640 before being input to the model. To
address scale ambiguity, predicted poses are aligned with
ground truth using 7-DoF similarity transformation.

B. Evaluation Metrics

We evaluate the performance of our visual odometry system
using the following standard metrics commonly used in the
KITTI benchmark:

• Translational Error (Terr): Measures the average rela-
tive translation error between predicted and ground truth
poses over the full trajectory:

Terr =
1

N

N∑
i=1

∥∥tgti − ti
∥∥
2∥∥tgti ∥∥

2

× 100 (7)

where tgti and ti are the ground truth and predicted
translations at frame i.

• Rotational Error (Rerr): Computes the average relative
rotation error using the Frobenius norm, normalized by
traveled distance:

Rerr =
1

N

N∑
i=1

∥∥Rgt
i −Ri

∥∥
F

di
× 100 (8)

where Rgt
i and Ri are the ground truth and predicted

rotation matrices, and di is the traveled distance at frame
i.

• Absolute Trajectory Error (ATE): Evaluates the global
trajectory alignment using RMSE:

ATE =

√√√√ 1

N

N∑
i=1

∥∥tgti − ti
∥∥2
2

(9)

ATE quantifies the overall discrepancy between the pre-
dicted and ground truth trajectories.

• Relative Pose Error (RPE): Assesses local motion
consistency between adjacent frames.
Translation RPE:

RPEtrans =
1

N − 1

N−1∑
i=1

∥∥∆tgti −∆ti
∥∥
2

(10)

Rotation RPE:

RPErot =
1

N − 1

N−1∑
i=1

∥∥Rgt
i −Ri

∥∥
F

(11)

where ∆ti = ti+1 − ti denotes the frame-to-frame
relative translation.

To address the scale ambiguity in monocular VO, a 7-DoF
similarity transformation is applied during evaluation to align
predicted trajectories with ground truth.

C. Comparison with State-of-the-Art

Table I compares our proposed VSTFusion-VO with sev-
eral representative visual odometry (VO) methods on the
KITTI Odometry benchmark [14], including the recurrent
Deep-VO [4], and transformer-based TSformer-VO2 [26] and
SWFormer-VO2 [25]. Among the TSformer and SWFormer
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Fig. 3: Visual comparison of predicted and ground-truth trajectories on KITTI sequences 01, 03, 04, 06, 07, and 10. These
sequences cover diverse scenarios including long-range navigation, sharp turns, and complex urban environments. All trajectories
are aligned using a 7-DoF similarity transformation.

series, we report only VO2 variants, as they demonstrate the
strongest performance in their respective families.

VSTFusion-VO achieves consistently strong results across
five standard metrics: translational error, rotational error, ab-
solute trajectory error (ATE), and relative pose error (RPE)
in both translation and rotation. Compared to the transformer-
based baselines, our model yields lower ATE and RPE, par-
ticularly in challenging sequences involving dynamic motion
or trajectory curvature.

Overall, VSTFusion-VO ranks among the top two methods
across all metrics, and notably outperforms TSformer-VO2 and
SWFormer-VO2 in sequences with sharp turns or rapid mo-
tion. While Deep-VO performs competitively in some metrics,
it suffers from unstable performance and large translational
drift in complex scenes.

As summarized in Table II, VSTFusion-VO achieves a
3.59% reduction in translational error, 8.76% lower ATE, and
2.54% lower translational RPE compared to SWFormer-VO2.
These improvements highlight the benefits of integrating early-
stage RGB-depth fusion and hierarchical video transformer
modeling.

These results confirm that our method effectively balances
rotational and translational accuracy, delivering robust perfor-

mance in dynamic environments and outperforming state-of-
the-art learning-based baselines.

TABLE II: Comparison of Average ATE, RPE, and Transla-
tional Error between SWFormer-VO2 and VSTFusion-VO.

Metric SWFormer-VO2 VSTFusion-VO Improvement (%)

Trans. error (%) 12.053 11.620 ↓ 3.59%
ATE (m) 31.636 28.865 ↓ 8.76%
RPE (m) 0.197 0.192 ↓ 2.54%

Note: ↓ indicates improvement (lower error is better).

D. Component-wise Analysis

Although our method incorporates pseudo-depth, all models
operate under the same monocular and RGB-only setting with-
out access to external depth sensors, ensuring a fair compari-
son. TSformer-VO lacks both depth fusion and video-specific
temporal modeling, while SWFormer-VO uses a hierarchical
Swin Transformer without depth fusion or temporal attention.
VSTFusion-VO integrates pseudo-depth with a video-native
backbone, leading to consistent improvements across KITTI
sequences as shown in Table I, especially in long-range
trajectories.



These results suggest that the main performance gains
stem from hierarchical temporal modeling and multimodal
integration, rather than access to ground-truth depth.

E. Trajectory Visualization on KITTI Sequences

Figure 3 shows qualitative comparisons between predicted
trajectories and ground truth on selected KITTI sequences. All
trajectories are aligned using a 7-DoF similarity transformation
to remove global scale and orientation mismatches. These
visualizations highlight the accuracy of our method under
diverse and challenging conditions.

The sequences cover various driving scenarios. Sequence
01 features long-range highway motion, prone to scale drift.
Sequences 03 and 04 are mostly linear and serve as consis-
tency references. Sequence 06 includes high-curvature turns,
while Sequence 07 captures urban scenes with occlusions and
abrupt direction changes. Sequence 10 reflects dense urban
layouts with frequent motion discontinuities.

Our method closely matches the ground truth across all
sequences. It effectively suppresses drift in Sequence 01 and
preserves trajectory curvature and orientation in Sequences 06
and 07. These results demonstrate the robustness of our depth-
aware transformer in maintaining trajectory accuracy across
different environments.

V. CONCLUSION AND FUTURE WORK

We presented a monocular VO framework, VSTFusion-VO,
that integrates early-stage RGB–depth fusion with a hierarchi-
cal Video Swin Transformer. The proposed model captures
spatiotemporal features effectively and enables accurate pose
estimation without relying on ground-truth depth. Experiments
on the KITTI benchmark show consistent improvements over
both traditional and transformer-based VO baselines. Particu-
larly in challenging scenarios involving sharp turns and rapid
motion, our model exhibits exceptional stability and trajectory
accuracy, validating the synergistic effect of early geometric
integration and video-native temporal modeling.

Future work will advance along several promising direc-
tions. In addition to exploring lightweight model variants
for real-time deployment and integrating semantic or inertial
information to enhance robustness, we also plan to investigate
the following key areas: model generalization, unsupervised
learning frameworks, and optimization of fusion mechanisms.
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“Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 6836–
6846.
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